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UNMIX and Positive Matrix Factorization (PMF) solutions
to the Chemical Mass Balance (CMB) equations were applied
to chemically speciated PM2.5 measurements from 23
sites in California’s San Joaquin Valley to estimate source
contributions. Six and seven factors were determined by
UNMIX for the low_PM2.5 period (February to October) and
high_PM2.5 period (November to January), respectively.
PMF resolved eight factors for each period that corresponded
with the UNMIX factors in chemical profiles and time
series. These factors are attributed to marine sea salt,
fugitive dust, agriculture-dairy, cooking, secondary aerosol,
motor vehicle, and residential wood combustion (RWC)
emissions, with secondary aerosol and RWC accounting
for over 70% of PM2.5 mass during the high_PM2.5 period. A
zinc factor was only resolved by PMF. The contribution
from motor vehicles was between 10 and 25% with higher
percentages occurring in summer. The PMF model was
further evaluated by examining (1) site-specific residuals
between the measured and calculated concentrations, (2)
comparability of motor vehicle and RWC factors against
source profiles obtained from recent emission tests, (3) edges
in bi-plots of key indicator species, and (4) spatiotemporal
variations of the factors’ strengths. These evaluations
support the compliance with model assumptions and give
a higher confidence level to source apportionment
results for the high_PM2.5 period.

Introduction
Persistent high particulate matter (PM) concentrations in
California’s San Joaquin Valley (SJV) (1, 2) stimulated
initiation of the California Regional PM10/PM2.5 Air Quality
Study (CRPAQS) (3), and the associated Fresno Supersite (4),
to identify the causes of elevated PM levels and to evaluate
means for remediation. An important CRPAQS objective is
to quantify source contributions to annual and high PM
concentrations.

Presented here are results from the Positive Matrix
Factorization (PMF) and UNMIX solutions to the Chemical
Mass Balance (CMB) equations (5) for PM2.5 (PM with
aerodynamic diameter <2.5 µm) source apportionment.
These results can be compared with the single-sample

effective variance solution (6) to the CMB equations and/or
source contribution estimates from source-oriented models
so that a “weight of evidence” approach can be used to
develop cost-effective control strategies (7). Owing to the
special topography and meteorology of the SJV and the
predominance of area and mobile emissions, urban and rural
sites are influenced by similar sources, but by differing
amounts. This allows the application of receptor models to
multiple-site measurements over seasonal monitoring pe-
riods during which the emission rates and source profiles
are reasonably constant. This analysis (1) demonstrates the
applicability of PMF and UNMIX to spatially as well as
temporally distributed measurements, and (2) evaluates the
consistency and reliability of PMF and UNMIX solutions in
preparation for comparison with other receptor- and source-
oriented models.

Methods
Ambient Observations. The CRPAQS ambient network
covered a region ∼600 km long by 200 km wide between
Bodega Bay on the northwest California Coast and Edwards
Air Force Base in the Mojave Desert (Figure 1). Site
characteristics and measured parameters are described in
the Supporting Information (Table S-1) and Chow et al. (3).
24-Hour sampling based on the U.S. EPA sixth-day compli-
ance schedule was carried out from 12/2/1999 to 2/3/2001.
During the winter of 2000-2001, intensive observation
periods (IOPs) obtained speciated PM2.5 measurements five
times a day in the urban areas of Fresno (FSF) and Bakersfield
(BAC) and at non-urban Angiola (ANGI), Bethel Island (BTI),
and Sierra Nevada Foothills (SNFH) sites on 15 days selected
by forecast (3). Most sites reported >90% data recovery
between 1/1/2000 and 1/31/2001.

Chow et al. (3) and Rinehart et al. (8) describe the PM2.5

spatiotemporal characteristics. PM2.5 concentrations varied
with elevation. While the valley floor experienced annual
PM2.5 up to 30 µg/m3, concentrations generally decreased to
<5 µg/m3 at the surrounding coastal, mountain, and desert
monitors. For non-urban sites in the SJV, elevated PM2.5 in
late fall and winter was mostly driven by ammonium nitrate
(NH4NO3), while carbonaceous material exacerbated PM2.5

pollution in urban areas such as Modesto (M14), Visalia (VCS),
Fresno (FSF), and Bakersfield (BAC). Regional transport
occurs aloft at night through a valley-wide layer that is
decoupled from a shallow (20-30 m) nighttime surface layer
during winter (2) and through a well-defined daytime
northwest-to-southeast flow during non-winter periods (9).

Based on these analyses, CRPAQS samples have been
divided into low_PM2.5 (February to October) and high_PM2.5

(November to January) periods (3) that approximately
correspond to the winter and non-winter emissions and
climatological regimes. The high_PM2.5 period contributed
50-75% of annual PM2.5 at within-valley sites (lower elevation)
with the highest contributions found in the urban areas. For
three desert sites outside the SJVsChina Lake (CHL), Mojave
(MOP), and Olancha (OLW)sthe high_PM2.5 period contri-
bution was <25% of the annual average, consistent with a
limited transport from the SJV to the Mojave Desert during
winter.

Multivariate Receptor Models. UNMIX (10, 11) and PMF
(12, 13) solve the CMB equations and are therefore subject
to the same derivation of CMB from physical principles with
its underlying assumptions. Cit, the concentration of the ith

chemical species measured at time or location t, is the linear
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sum of contributions from a number of independent sources
or factors:

Fij is the fractional abundance of the ith species in the jth

source type, Sjt is the normalized contribution of the jth source
at time and/or location t, and Eit represents the error between
the measured and calculated ambient concentrations.

Receptor models such as PMF and UNMIX estimate Fij

and Sjt by minimizing:

where the weighting factor, σit, intends to represent the
magnitude of Eit. Although ambient measurement precisions
are often used for σit (as in this study), this is an underes-
timation as most of the uncertainty originates from variability
in the emissions (6). UNMIX and PMF limit solutions of eq
2 to nonnegative Fij and Sjt. The resolved UNMIX and PMF
factors should be associated with emission sources by
comparing the Fij with measured source profiles.

When Cit are available from several times and locations,
it is possible to expand eq 1 to a three-way factor analysis
(14, 15). Such analyses contain a large number of factors and
often require additional constraints to stabilize the solutions.
Source emissions are also assumed to be reasonably similar
for the range of sample times and locations.

UNMIX v2.3 software applied in this study limits itself to
seven factors, while a newer version (UNMIX v5, currently
in beta testing) sets no limit. These UNMIX v2.3 results are
equivalent to those obtained from the beta version. EPA PMF
v1.1 (16) software was applied because it selects random
initial points for multiple runs and allows bootstrap testing
to evaluate the uncertainty of rotational freedom (17). When
running in a robust mode, PMF adapts the Huber influence
function, a technique for iterative reweighting of the input
data values to lessen the influence of extreme values (18).

UNMIX and PMF have been previously applied to many
PM2.5 source apportionment studies (19-24), but their results
do not always agree (23, 24). Differences are attributed to the
following: (1) different strategies for treating uncertainties
and seeking the best fit; (2) different constraints on factor
rotational freedom; and (3) different practitioner preferences.
Applying both models to the same measurements and
reconciling their source contribution estimates with each
other and source-oriented models (e.g., 25) provides the basis
for the weight of evidence approach.

Source and Receptor Characteristics. Potential sources
of PM2.5 in the SJV are summarized in the Supporting
Information along with expected chemical markers. For
California, area sources, including road/fugitive dust, resi-
dential and agriculture burning, construction, and cooking,
account for about 76% of primary statewide PM2.5 emissions
(Table S-2). Approximately half of the remaining directly
emitted PM2.5 (12%) originates from on-road and off-road
engine exhaust. Source activities are spatially inhomogeneous
but, as noted earlier, mixing within the SJV takes place within

FIGURE 1. Ambient PM2.5 sampling network for CRPAQS. Sites in bold are included in this study. (ACP: Angels Camp; ALT1: Altamont
Pass; ANGI: Angiola; BAC: Bakersfield; BODG: Bodega Marine Lab; BRES: Bakersfield Residential; BTI: Bethel Island; CARP: Carrizo
Plain; CHL: China Lake; CLO: Clovis; COP: Corcoran; EDI: Edison; EDW: Edwards Air Force Base; FEDL: Dairy; FEL: Fellows; FELF:
Foothills above Fellows; FREM: Fresno Roadside; FRES: Fresno Residential; FSF: Fresno; HELM: Helm-Central Fresno County; KCW:
Kettleman City; LVR1: Livermore; M14: Modesto; MOP: Mojave-Poole; MRM: Merced; OLD: Oildale-Manor; OLW: Olancha; PAC: Pacheco
Pass; PIXL: Pixley Wildlife Refuge; PLE: Pleasant Grove; S13: Sacramento; SELM: Selma; SFA: San Francisco; SNFH: Sierra Nevada
Foothills; SOH: Stockton-Hazelton; SWC: Southwest Chowchilla; TEH2: Tehachapi Pass; VCS: Visalia Church St.).
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a day during summer and over a few days during winter (2,
3, 9).

Each site had from 46 to 76 days of speciated PM2.5

measurements (Table S-3). Though PMF and UNMIX do not
specify a minimum number of samples, the stability of their
solutions increases with the number of samples. The sample
sets must have a large variation in source contributions
among different samples, and the chemical profiles of the
contributing sources should remain constant within a source
type but differ substantially between source types. The
CRPAQS PM2.5 dataset meets these requirements because
area and mobile source profiles are reasonably consistent,
in the aggregate, throughout the SJV (i.e., not site-specific);
and there is a large expected variability between source
contributions by sampling time and location (26).

Mineral processing, gas-fired electricity production, oil
and gas extraction, and agricultural processing are important
stationary sources in central California, but their primary
PM2.5 emission rates are small compared to those of area
and mobile sources (Table S-2). Some CRPAQS sites were
located within or next to dairies (FEDL), oilfields (FEL), and
agricultural operations (HELM). PMF and UNMIX are
expected to identify profiles of these specific sources and
estimate much higher contributions from them at the nearby
locations than at more distant receptors. This situation is
analogous to these and other factor models identifying a
fireworks factor that only contributes on the Fourth of July
(e.g., 27).

Emission factors and chemical profiles of the area and
mobile sources are expected to differ between seasons. Motor
vehicle cold starts are more prevalent during the winter
season. Wood stoves and fireplaces are only used during

winter, while agricultural burning and wildfires are more
prevalent during warm non-winter periods. The large change
of temperature and relative humidity from summer to winter
alters the thermodynamic equilibrium between particle-
phase and gas-phase pollutants and possibly modifies the
factors representing secondary aerosol composed of NH4-
NO3, ammonium sulfate [(NH4)2SO4], and organic matter.
To ensure uniformity of source profiles, the UNMIX and PMF
analyses were limited to 23 “within-valley” sites identified in
Figure 1. The low_PM2.5 and high_PM2.5 periods that contain
a total of 929 and 670 samples, respectively, were analyzed
separately.

Results and Discussion
Magliano et al. (28) used a nine-source single-sample effective
variance solution to explain 81-91% of winter 1995 PM2.5 in

FIGURE 2. UNMIX (vertical lines) and PMF (bars) factor profiles for (a) high_PM2.5 and (b) low_PM2.5 periods, in terms of average contributions
to PM2.5 mass and fitting species. The upper and lower triangles represent the upper and lower bounds of the PMF factor contribution,
respectively, determined from the 95th and 5th percentile bootstrapping values. RWC ) residential wood combustion.

TABLE 1. Fractional Contributions of UNMIX and PMF Factors
to Valleywide PM2.5 during Winter and Non-Winter Periods

high_PM2.5
(Nov.-Jan.)

low_PM2.5
(Feb.-Oct.)

factors UNMIX PMF UNMIX PMF

marine 0% 0% 10% 7%
fugitive dust 3% 5% 16% 19%
agriculture-dairy 2% 2% 5% 4%
cooking 5% 3% 5% 9%
secondary aerosol 51% 48% 38% 36%
motor vehicle 15% 10% 25% 13%
residential wood combustion 24% 23%
secondary aerosol II 7%
zinc 9% 6%
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the SJV. Source types included two geological (i.e., road dust
and construction), three secondary aerosol (i.e., NH4NO3,
(NH4)2SO4, OC), vegetative burning, vehicle exhaust, industry
(oilfield), and marine emitters. Industry and construction
contributed minor fractions (<0.1%) at urban and rural sites.
Schauer and Cass (29) estimated similar source contributions
for multi-day composites during winter 1995, using organic
markers, but they resolved the motor vehicle portions into
gasoline and diesel contributions and the vegetative burning
portions into hardwood, softwood, and cooking contribu-
tions.

UNMIX and PMF Analysis. PM2.5 mass was not used as
input to either model to obtain factors, but it was used to
apportion PM2.5 to the factors. Initial UNMIX trials used
nitrate (NO3

-), sulfate (SO4
2-), ammonium (NH4

+), ammonia
(NH3), soluble sodium (Na+), soluble potassium (K+), organic

carbon (OC), elemental carbon (EC), total carbon (TC),
thermal carbon fractions (OC1-OC4, OP, and EC1-EC3
quantified by the IMPROVE_TOR protocol (30)), and silicon
(Si) measurements. Na+, K+, and Si are the indicators for
marine air intrusion, vegetative burning, and fugitive dust,
respectively. High-temperature EC (EC2, EC fraction evolved
at 700 °C in an oxidative environment) dominates the PM
emission from diesel engines but is a minor component of
gasoline emission and wood smoke (31, 32). Although >80%
of the variability in both high_PM2.5 and low_PM2.5 samples
would be explained by seven principle components, no
feasible solutions were found by UNMIX. By applying the
UNMIX “OVERNIGHT” option to evaluate all possible
combinations, 6-factor and a 7-factor solutions were found
for the low_PM2.5 and high_PM2.5 periods, respectively, using
common species NO3

-, NH4
+, total ammonium (T-NH3 )

FIGURE 3. Comparisons of PMF motor vehicle (MV) and residential wood combustion (RWC) factors with measured source profiles
(normalized to average source contributions during CRPAQS). The uncertainties of PMF factors are those in Figure 2 while the uncertainties
in measured profiles are determined from the standard deviation of averages from different emitters within the source type.

FIGURE 4. OC versus EC for all samples and by site collected during the high_PM2.5 period. Solid lines indicate the OC/EC ratios in the
MV, RWC, and cooking PMF factors.
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NH3 + NH4
+), Na+, K+, OC, EC2, EC, TC, and Si, and an

additional species OC1 for the high_PM2.5 period only. Signal/
noise ratios and strengths in both solutions were ∼2 or higher.

PMF included 27 species that were above lower quantifi-
able limits (LQL) for at least 50% of the samples plus the
eight thermal carbon fractions (Table S-3). Eight-factor
solutions were determined by PMF with the robust mode for
both the high_ and low_PM2.5 periods. FPEAK and FKEY are
often adjusted to rotate PMF factors toward known source
profiles or contributions (e.g., 33, 34). EPA PMF v1.1 software
does not contain FPEAK or FKEY options, but the uncertainty
in PMF solutions can be estimated using a bootstrapping
technique coupled with a method to account for rotational
freedom (16). Figure 2 presents the PMF factors with upper
and lower bounds determined from the 5th and 95th
percentiles of 100 bootstrap values. The median Q values
were 20 858 (low_PM2.5 period) and 18 964 (high_PM2.5

period), compared to ideal values of 31 586 (low_PM2.5 period)
and 22 780 (high_PM2.5 period). The ideal Q is the number
of measured Cit, assuming that the model contains only
measurement uncertainty that has been accurately deter-
mined (i.e., Eit/σit ) 1). The Q analysis implied seven or eight
factors for both periods. Eight-factor models were selected
for a better comparison of their profiles with UNMIX factors
and measured source profiles from recent emission tests.

The contribution of each factor to PM2.5 was estimated by
an unweighted multiple linear regression with zero intercept

against the factor scores (Sjt) (e.g., 35, 36). The regression
correlations were high; r ) 0.92(UNMIX)/0.96(PMF) and 0.79-
(UNMIX)/0.87(PMF) for the high_ and low_PM2.5 period,
respectively. The UNMIX factors were paired with the PMF
factors by ranking correlations of each of the UNMIX factors
with each of the PMF factors in time series. Each UNMIX
factor correlated well (e.g., r > 0.8 for most cases) with one
and only one PMF factor (Table S-4), so there was no
ambiguity in matching the pairs. Figure 2 compares the
UNMIX and PMF factors. Their common species agree within
the PMF bootstrap uncertainties.

Based on source markers, seven common factors resolved
by UNMIX and PMF for the high PM2.5 period are (1) marine
(Na+); (2) fugitive dust (Si); (3) agriculture-dairy (T-NH3, OC);
(4) cooking (K+, OC, EC); (5) secondary aerosol (NO3

-, NH4
+,

OC); (6) motor vehicle (OC, EC2, EC); and (7) residential
wood combustion (K+, Cl-, OC1, OC, EC). The extra factor
from PMF contains a high zinc (Zn) content and could be
related to brake and tire wear (37). For the low_PM2.5 period,
the six common factors are (1) marine; (2) fugitive dust; (3)
agriculture-dairy; (4) cooking; (5) secondary aerosol; and (6)
motor vehicle exhaust. The additional two factors from PMF
are Zn and another secondary aerosol factor featuring (NH4)2-
SO4.

Larger discrepancies between the UNMIX and PMF
profiles occur for the marine factor during the high_PM2.5

period (Figure 2a), but neither model apportions PM2.5 mass

FIGURE 5. Cumulative PMF scaled residuals (difference between calculated and measured PM2.5), by site, for the high_PM2.5 and low_PM2.5

periods. The vertical lines indicate scaled residuals of (4; i.e., the difference between calculated concentration from the measured value
is four times the measurement uncertainty.
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to this factor. PMF consistently allocates carbon and silicon
to the agriculture-dairy factor for the low_PM2.5 period, while
UNMIX does not. Contribution estimates for these minor
factors may contain higher uncertainties. The residential
wood combustion (RWC) factor appears only during the
wintertime high_PM2.5 period, and the sulfate factor appears
only during the non-winter low_PM2.5 period. This is
consistent with the expected seasonal variations of these
sources; i.e., residential heating demand increases during
the winter while sulfate is more efficiently formed during
summer. The OC/EC ratio in the motor vehicle (MV) factor
is lower (1.2 by PMF and 1.7 by UNMIX) for the high_PM2.5

period than for the low_PM2.5 period (2.8 by both PMF and
UNMIX. Cadle et al. (38) report a similar seasonal trend of
OC/EC ratio for Denver, CO.

Annual average PM2.5 concentrations are well explained
within ( 1% by both UNMIX and PMF factors (Table 1).
Secondary aerosol, RWC, and vehicle contributions account
for ∼90% of the PM2.5 mass during the high_PM2.5 period if
the Zn factor is classified as a mobile source contribution.
UNMIX and PMF achieve similar source contribution esti-
mates and are consistent with Magliano et al. (28) and Schauer
and Cass (29) for winter 1995. The portions of PM2.5 from
secondary aerosol and RWC are much lower for the non-
winter (low_PM2.5) period, while the portions due to fugitive
dust and marine aerosol are larger compared to the winter
period.

Evaluation of Source Contribution Estimates. Figure 3
compares the PMF MV and RWC factors with measured

source profiles. RWC samples were collected at a residential
fireplace chimney burning Sierra Nevada hardwood (oak) or
softwood (juniper) (39), commonly available fuels throughout
the SJV. The MV samples were acquired in Las Vegas, NV
during December 2003 (40) in source-dominated environ-
ments with gasoline-powered vehicles or diesel engines. Las
Vegas receives California-grade fuels by pipeline from
California refineries, and vehicle mixes are similar to those
in California. The source samples were analyzed for the same
species using the same methods as applied to the receptor
samples. Contamination from road dust was removed from
the MV samples by CMB using known geological source
profiles (41). Figure 3 presents profiles based on two to four
replicate measurements. Since both RWC and MV source
profiles represent winter conditions, they are only compared
with the PMF factors for the high_PM2.5 period.

The OC/EC ratio in PMF MV is 1.2, compared to 1.9 in
the gasoline and 1.2 in the diesel profiles. The EC2/EC ratio
of PMF MV (0.80) is also closer to diesel (0.85) than to gasoline
exhaust (0.32). The gasoline source profile contains a
substantial abundance of gaseous NH3 (2.8 times the PM2.5

mass), Na+, and K+, which are not as abundant in the diesel
and PMF MV profiles. The PMF-derived MV profile appears
to represent a combination of diesel and gasoline emissions
with a dominating influence from diesel. A clear edge in the
OC versus EC scatter plot (Figure 4) corresponds to the PMF
MV factor, and this supports a consistent MV source profile
within the SJV. Strict emissions regulation and periodic
compliance testing in Nevada and California could account

FIGURE 6. Spatial distributions of temporally averaged PMF factor contribution estimates for the high_PM2.5 period (Nov.-Jan.). The
distribution of marine factor during the low_PM2.5 period is also presented (last panel).
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for the low influence of gasoline engine exhaust on ambient
PM2.5. Increasing the number of factors does not distinguish
the gasoline from diesel exhaust contributions. Zn is found
in both diesel and gasoline profiles, possibly owing to
deterioration of the galvanized exhaust systems. PMF at-
tributed most of the Zn to a separate factor. Reducing the
number of factors in PMF does not merge this factor with
the MV factor.

OC/EC ratios for softwood and hardwood burning are 8.1
and 12.4, respectively, compared to 3.3 in the PMF RWC
profile (Figure 4). The OC/EC ratio is known to vary with fuel
and burning conditions (32). The PMF RWC factor contains
more abundant NO3

- and NH4
+ than the measured wood

burning profiles, but the T-NH3 abundances are close. The
K+ abundance in the PMF RWC factor is comparable to that
of the measured hardwood burning profile. Among carbon
fractions, OC1 and POC show larger deviations between the
measured profiles and PMF factors.

The PMF MV and RWC factors combined explain 10.4
µg/m3 TC or ∼82% of the measured value, including 28%
from MV and 54% from RWC. When the Zn factor is included,
motor vehicles contribute up to 31% of TC, in better
agreement with the UNMIX estimate (36% of TC).

The difference between measured and calculated species
concentration divided by the measurement uncertainty, i.e.,
scaled residual, is a useful performance measure. Data with
scaled residual >4 or <-4 are downweighted in the PMF
analysis with robust mode and therefore have low impacts
on the source apportionment results. For the high_PM2.5

period, PMF determines PM2.5 scaled residuals within (4 for
∼80% of the data (Figure 5a). The sign and magnitude of the
scaled residual vary by site, but no outlier sites or spatial
trends are identified from Figure 5a. The low_PM2.5 period,
however, contains three outliers, ANGI, FSF, and BAC (Figure
5b), where PMF underestimates the PM2.5 mass for >60% of
the data. This substantial unapportioned mass implies
unknown sources and/or different source profiles at these
sites.

The PMF factors explain TC and NO3
- concentrations

well for the high_PM2.5 period (see Figure S-2 in the
Supporting Information); for every site, the scaled residuals
are mostly within ( 4. Broader distributions of scaled
residuals for TC and NO3

- are found during the low_PM2.5

period. PMF underestimates TC at ANGI, FSF, and BAC, which
is consistent with the situation for PM2.5 mass. PMF also
underestimates NO3

- at FSF and BAC for the low_PM2.5

period. PMF explains source markers such as Si, K+, and EC
concentrations reasonably well across all sites for both
periods (Figure S-2).

Adsorption of organic vapors on quartz-fiber filters that
is under-corrected by blank subtraction inflates OC and TC
concentrations, the ratio of OC to other species, and PM2.5

mass closure by differing degrees (42). Better PM2.5 mass
closures (closer to 100%) are found at ANGI, FSF, and BAC
during the low_PM2.5 period (3). This partially explains why
the three sites are forced into outliers in the receptor modeling
that combines all sites together. Moreover, the fraction of
volatilized NO3

- was the highest at FSF and BAC during the
low_PM2.5 period (3). Variability of the organic and nitrate
sampling artifacts are not part of the analytical uncertainty
considered in eq 2. Source apportionment for the high_PM2.5

period is likely more reliable, since the sampling artifacts are
relatively minor compared to high ambient TC and NO3

-

concentrations.
Spatial and Temporal Variations. Figure 6 compares the

PMFcontributionsamongdifferentsitesduringthehigh_PM2.5

period. Similar comparisons for the low_PM2.5 period are in
the Supporting Information (Figure S-3). There is no clear
spatial trend for the marine contribution during the
high_PM2.5 period, though during the low_PM2.5 period the
distribution of marine contributions is consistent with lower
elevation and frequent land-sea exchange in the northern
SJV.

During the high_PM2.5 period, higher contributions from
fugitive dust occurred south of FSF with the highest
contribution observed at ANGI. This may be explained by
the nearby unpaved road and extensive tilling and harvesting
of cotton fields in the area.

FIGURE 7. Monthly PMF factor contribution estimates averaged over the 23 CRPAQS sites.
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Contributions from agriculture-dairy are high in some
rural areas and relatively minor at urban sites such as FSF,
S13, and BAC. The largest contribution in the agriculture-
dairy distribution (Figure 6) represents the dairy site (FEDL),
where the NH3 concentration was at least an order of
magnitude higher than at any other site. This factor would
probably not appear in PMF or UNMIX if this source-oriented
site was unavailable.

The RWC factor dominates at urban sites, including
Fresno, Bakersfield, Modesto, Merced, Visalia, and Sacra-
mento, and is a low contributor at non-urban sites such as
ANGI. The cooking factor shows a similar spatial distribution.
The urban influence of the MV factor is less than that of RWC
and cooking. Even rural sites could be impacted by major
highways such as I-5 and CA-99 that are major north/south
arterials. Farm equipment and other non-road engines are
also used throughout the SJV. Contributions of the MV factor
at FSF, FREM, and FRES that are in commercial (rooftop),
roadside, and residential microenvironments, respectively,
in Fresno are 2.7, 4.7, and 4.8 µg/m3 PM2.5 for the high_PM2.5

period, compared with a more uniform RWC contribution
of 24-27 µg/m3.

Secondary aerosol contributions are highest in the
southeastern SJV with little urban-rural contrast (Figure 6).
This factor also contains substantial OC that is possibly of
secondary origin in winter (e.g., 43). The source of factor Zn
is thought to be mobile-related, though its spatial distribution
is somewhat between the RWC and MV factors.

Figure 7 shows the monthly PMF factor contributions
averaged over the network. The reconstructed mass agrees
with the measured PM2.5 within (10% even for the low_PM2.5

period. A rapid increase in PM2.5 concentration from October
to November results from increasing influences from RWC
and secondary aerosol. These two factors also dominate the
monthly highs in January 2001 (over 85 µg/m3 at FSF and
BAC). Secondary aerosol is the most important factor
everywhere except at FSF, where RWC was a large contributor
at times during the winter. The secondary nitrate contribution
decreases rapidly after January and reaches its lowest level
between June and September.

Although dust contributes to no more than 20% and 5%
of PM2.5 mass for the low_ and high_PM2.5 period, respectively,
it was the dominant factor in the SJV between August and
September 2000 (monthly contribution: 2.7 and 2.0 µg/m3

PM2.5, respectively). The cooking factor does not show a clear
seasonal trend, but was high in January 2000. Since this factor
shares three major indicators, K+, OC, and EC, with RWC,
some overlaps of its contribution with RWC are expected
during the high_PM2.5 period. The cooking factor may be
influenced by other types of burning during the low_PM2.5

period, such as agricultural burning and forest fires. Besides
K+, EC2 is the most influential marker for distinguishing MV
from the RWC contributions. Inclusion of organic markers
specific to RWC, MV, and cooking in the receptor models
should improve the resolution (29, 44). This would require
measurement of organic compounds on hundreds of indi-
vidual samples, which is not yet practical using extractive
methods, but it may be possible using thermal methods with
more specific detectors (45).
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